Closing tonight: 3.3

Closing next Fri: 3.4(1), 3.4(2)

Exam 1 is Tuesday in normal quiz section. See website for a reminder of rules and a review sheet/study advice.

3.3 Trig Derivatives (continued)

Last time, we showed

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \cos(x)$$

By using a trig identity and the fact

$$\lim_{h\to 0}\frac{\sin(h)}{h}=1.$$

Thus,

$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

Similarly, it can be shown that

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

Entry Task: Use the quotient rule to find the derivatives of

$$1. y = \frac{\sin(x)}{\cos(x)}$$
$$2. y = \frac{1}{\sin(x)}$$

$$2. y = \frac{1}{\sin(x)}$$

$\frac{d}{dx}(\sin(x)) = \cos(x)$	$\frac{d}{dx}(\cos(x)) = -\sin(x)$
$\frac{d}{dx}(\tan(x)) = \sec^2(x)$	$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$
$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$	$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$

What is the derivative of:

$$1. y = x^3 \tan(x)$$

$$2.y = e^x \cos(x) + \frac{3x}{2}$$

Side note: You can now use

$$\lim_{h\to 0}\frac{\sin(h)}{h}=1$$

$$2.\lim_{x\to 0}\frac{\sin(5x)}{4x} =$$

Examples: Evaluate

$$1.\lim_{x\to 0}\frac{\sin(3x)}{3x} =$$

$$3.\lim_{x\to 0}\frac{\sin(6x)-3e^x\sin(6x)}{x}=$$

3.4 Chain Rule

The **composition** of two function is defined by

$$(f \circ g)(x) = f(g(x))$$

Example:

If
$$f(x) = \sin(x)$$
, $g(x) = x^3$, then
$$(f \circ g)(x) = f(g(x)) = \sin(x^3).$$

Chain Rule:

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Also written as:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Example:

$$\frac{d}{dx}\sin(x^3) = \cos(x^3) \, 3x^2$$

Here is a brief "proof sketch" for the chain rule:

From the definition of derivative

$$\frac{d}{dx}f(g(x)) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(g(x+h)) - f(g(x))}{h} \cdot \frac{g(x+h) - g(x)}{g(x+h) - g(x)}\right)$$

$$= \lim_{h \to 0} \left(\frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)}\right) \left(\frac{g(x+h) - g(x)}{h}\right)$$

$$= f'(g(x))g'(x)$$

Examples: Find the derivative

1.
$$y = (2x^2 + 1)^2$$

2.
$$y = e^{\sin((2x+1)^3)}$$

$$3. y = \tan(3x + \cos(4x))$$

$$4.y = \sin^4(x)$$

$$5.y = \sin(x^4)$$

Identify the "first" rule you would use to differentiate these functions: (sum, product, quotient or chain?)

$$1.y = \sqrt{\sin(x) + x^2 + 1}$$

$$2.y = \frac{x^4}{\sin(5x+1)}$$

$$3.y = \sqrt[3]{4x + 1}\cos(\sin(2x))$$

$$4.y = e^{\tan(x)} - 5(x^8 + 1)^{50}$$

$$5.y = \left(\frac{x^2-1}{x^4+1}\right)^{10}$$